290
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C., (1998).
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature, 391(6669), 806–811. https://doi. org/10.1038/35888.
Floyd, S. K., & Bowman, J. L., (2004). Ancient microRNA target sequences in plants. Nature,
428(6982), 485–486. https://doi.org/10.1038/428485a.
Frazier, T. P., Sun, G., Burklew, C. E., & Zhang, B., (2011). Salt and drought stresses induce
the aberrant expression of microRNA genes in tobacco. Molecular Biotechnology, 49(2),
159–165. https://doi.org/ 10.1007/s12033-011-9387-5.
Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., et al., (2017). Identification
of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-
throughput sequencing and degradome analysis. Frontiers in Plant Science, 8, 864. https://
doi.org/10.3389/fpls.2017.00864.
Furini, A., Koncz, C., Salamini, F., & Bartels, D., (1997). High level transcription of a
member of a repeated gene family confers dehydration tolerance to callus tissue of
Craterostigma plantagineum. The EMBO Journal, 16(12), 3599–3608. https://doi.org/10.
1093/emboj/16.12.3599.
Gandikota, M., Birkenbihl, R. P., Höhmann, S., Cardon, G. H., Saedler, H., & Huijser, P.,
(2007). The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP
box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant
Journal, 49(4), 683–693. https://doi.org/10.1111/j.1365-313x.2006.02983.x.
Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., Ji, W., et al., (2010). Over-expression of osa
MIR396c decreases salt and alkali stress tolerance. Planta, 231(5), 991–1001. https://doi.
org/10.1007/s12374-017-0093-0.
Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., Cai, H., et al., (2011). osa-MIR393: A
salinity-and alkaline stress-related microRNA gene. Molecular Biology Reports, 38(1),
237–242. http://dx.doi.org/10.1007/s11033-010-0100-8.
Gao, S., Yang, L., Zeng, H. Q., Zhou, Z. S., Yang, Z. M., Li, H., Sun, D., et al., (2016). A
cotton miRNA is involved in regulation of plant response to salt stress. Scientific Reports,
6(1), 1–14. https://doi.org/10.1038/srep19736.
Gehan, M. A., Greenham, K., Mockler, T. C., & McClung, C. R., (2015). Transcriptional
networks—Crops, clocks, and abiotic stress. Current Opinion in Plant Biology, 24, 39–46.
https://doi.org/10.1016/j.pbi.2015.01.004.
Gentile, A., Dias, L. I., Mattos, R. S., Ferreira, T. H., & Menossi, M., (2015). microRNAs and
drought responses in sugarcane. Frontiers in Plant Science, 6, 58. https://doi.org/ 10.3389/
fpls.2015.00058.
Golldack, D., Lüking, I., & Yang, O., (2011). Plant tolerance to drought and salinity:
Stress regulating transcription factors and their functional significance in the cellular
transcriptional network. Plant Cell Reports, 30(8), 1383–1391. https://doi.org/10.1007/
s00299-011-1068-0.
Gong, W., Ren, Y., Zhou, H., Wang, Y., Kang, S., & Li, T., (2008). siDRM: An effective and
generally applicable online siRNA design tool. Bioinformatics, 24(20), 2405–2406. https://
doi.org/10.1093/bioinformatics/btn442.
Griffiths-Jones, S., Grocock, R. J., Van, D. S., Bateman, A., & Enright, A. J., (2006).
miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Research,
34(suppl_1), D140–D144. https://doi.org/10.1093/nar/gkj112.
Grobhans, H., & Filipowicz, W., (2008). The expanding world of small RNAs. Nature,
451(7177), 414–416. https://doi.org/10.1371/journal.pgen.0040022.